\(\int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [648]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 49 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {3 x}{a^3}+\frac {3 \text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\cos (c+d x)}{a^3 d}-\frac {\cot (c+d x)}{a^3 d} \]

[Out]

3*x/a^3+3*arctanh(cos(d*x+c))/a^3/d+cos(d*x+c)/a^3/d-cot(d*x+c)/a^3/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2948, 2836, 3855, 3852, 8, 2718} \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {3 \text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\cos (c+d x)}{a^3 d}-\frac {\cot (c+d x)}{a^3 d}+\frac {3 x}{a^3} \]

[In]

Int[(Cos[c + d*x]^4*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

(3*x)/a^3 + (3*ArcTanh[Cos[c + d*x]])/(a^3*d) + Cos[c + d*x]/(a^3*d) - Cot[c + d*x]/(a^3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rule 2948

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[a^(2*m), Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f,
 n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \csc ^2(c+d x) (a-a \sin (c+d x))^3 \, dx}{a^6} \\ & = \frac {\int \left (3 a^3-3 a^3 \csc (c+d x)+a^3 \csc ^2(c+d x)-a^3 \sin (c+d x)\right ) \, dx}{a^6} \\ & = \frac {3 x}{a^3}+\frac {\int \csc ^2(c+d x) \, dx}{a^3}-\frac {\int \sin (c+d x) \, dx}{a^3}-\frac {3 \int \csc (c+d x) \, dx}{a^3} \\ & = \frac {3 x}{a^3}+\frac {3 \text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\cos (c+d x)}{a^3 d}-\frac {\text {Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^3 d} \\ & = \frac {3 x}{a^3}+\frac {3 \text {arctanh}(\cos (c+d x))}{a^3 d}+\frac {\cos (c+d x)}{a^3 d}-\frac {\cot (c+d x)}{a^3 d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(106\) vs. \(2(49)=98\).

Time = 1.09 (sec) , antiderivative size = 106, normalized size of antiderivative = 2.16 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^6 \left (6 (c+d x)+2 \cos (c+d x)-\cot \left (\frac {1}{2} (c+d x)\right )+6 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-6 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+\tan \left (\frac {1}{2} (c+d x)\right )\right )}{2 d (a+a \sin (c+d x))^3} \]

[In]

Integrate[(Cos[c + d*x]^4*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^3,x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^6*(6*(c + d*x) + 2*Cos[c + d*x] - Cot[(c + d*x)/2] + 6*Log[Cos[(c + d*x
)/2]] - 6*Log[Sin[(c + d*x)/2]] + Tan[(c + d*x)/2]))/(2*d*(a + a*Sin[c + d*x])^3)

Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.35

method result size
parallelrisch \(\frac {6 d x -2-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \cos \left (d x +c \right )+2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{3} d}\) \(66\)
derivativedivides \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+12 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{3}}\) \(73\)
default \(\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4}{1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}+12 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{3}}\) \(73\)
risch \(\frac {3 x}{a^{3}}+\frac {{\mathrm e}^{i \left (d x +c \right )}}{2 d \,a^{3}}+\frac {{\mathrm e}^{-i \left (d x +c \right )}}{2 d \,a^{3}}-\frac {2 i}{a^{3} d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d \,a^{3}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d \,a^{3}}\) \(104\)
norman \(\frac {\frac {153 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {42 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {252 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {15 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {213 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {90 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {252 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {213 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {153 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {90 x \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {1}{2 a d}+\frac {42 x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}+\frac {15 x \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {93 \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {9 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {3 x \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {6 \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a}+\frac {\tan ^{15}\left (\frac {d x}{2}+\frac {c}{2}\right )}{2 d a}-\frac {249 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}+\frac {3 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}-\frac {111 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {43 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {255 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {72 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {102 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {87 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {81 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {41 \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,a^{3}}\) \(572\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/2*(6*d*x-2-6*ln(tan(1/2*d*x+1/2*c))-sec(1/2*d*x+1/2*c)*csc(1/2*d*x+1/2*c)+2*cos(d*x+c)+2*tan(1/2*d*x+1/2*c))
/a^3/d

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.67 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {2 \, {\left (3 \, d x + \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 3 \, \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 3 \, \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right )}{2 \, a^{3} d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

1/2*(2*(3*d*x + cos(d*x + c))*sin(d*x + c) + 3*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 3*log(-1/2*cos(d*x +
 c) + 1/2)*sin(d*x + c) - 2*cos(d*x + c))/(a^3*d*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**2/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 158 vs. \(2 (49) = 98\).

Time = 0.31 (sec) , antiderivative size = 158, normalized size of antiderivative = 3.22 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {\frac {4 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}{\frac {a^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {a^{3} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}} + \frac {12 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}} - \frac {6 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}} + \frac {\sin \left (d x + c\right )}{a^{3} {\left (\cos \left (d x + c\right ) + 1\right )}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/2*((4*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)/(a^3*sin(d*x + c)/(cos(d*x
+ c) + 1) + a^3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3) + 12*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3 - 6*log(
sin(d*x + c)/(cos(d*x + c) + 1))/a^3 + sin(d*x + c)/(a^3*(cos(d*x + c) + 1)))/d

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 111 vs. \(2 (49) = 98\).

Time = 0.35 (sec) , antiderivative size = 111, normalized size of antiderivative = 2.27 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\frac {6 \, {\left (d x + c\right )}}{a^{3}} - \frac {6 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{3}} + \frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} a^{3}}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^2/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/2*(6*(d*x + c)/a^3 - 6*log(abs(tan(1/2*d*x + 1/2*c)))/a^3 + tan(1/2*d*x + 1/2*c)/a^3 + (2*tan(1/2*d*x + 1/2*
c)^3 - tan(1/2*d*x + 1/2*c)^2 + 6*tan(1/2*d*x + 1/2*c) - 1)/((tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2*c))*a
^3))/d

Mupad [B] (verification not implemented)

Time = 10.47 (sec) , antiderivative size = 151, normalized size of antiderivative = 3.08 \[ \int \frac {\cos ^4(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^3} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a^3\,d}-\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {6\,\mathrm {atan}\left (\frac {36}{36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+36}-\frac {36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{36\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+36}\right )}{a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1}{d\,\left (2\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+2\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )} \]

[In]

int(cos(c + d*x)^6/(sin(c + d*x)^2*(a + a*sin(c + d*x))^3),x)

[Out]

tan(c/2 + (d*x)/2)/(2*a^3*d) - (3*log(tan(c/2 + (d*x)/2)))/(a^3*d) - (6*atan(36/(36*tan(c/2 + (d*x)/2) + 36) -
 (36*tan(c/2 + (d*x)/2))/(36*tan(c/2 + (d*x)/2) + 36)))/(a^3*d) - (tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x)/2)
 + 1)/(d*(2*a^3*tan(c/2 + (d*x)/2)^3 + 2*a^3*tan(c/2 + (d*x)/2)))